If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2+5=117
We move all terms to the left:
7b^2+5-(117)=0
We add all the numbers together, and all the variables
7b^2-112=0
a = 7; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·7·(-112)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*7}=\frac{-56}{14} =-4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*7}=\frac{56}{14} =4 $
| 2u+13=-5 | | 1.5x7=49 | | x-55=12 | | 11x-50=45 | | x-100=61.2 | | 5=g+3 | | x-7=14.7 | | p+9.5=20 | | x-70=51 | | (-4)=3x+9 | | 123+2x+8+3x+5=180 | | 9.2^x-4^x=8 | | 3x2-2x+9=0 | | -5y+6=41 | | p/3=37 | | w/17=1 | | 2(5x-2)=4+10x | | 10+z=15 | | x-60=47 | | 20x+4x+x=180 | | x-265=90 | | 2=2x-4(x-2) | | 16+7/12y=44 | | 6-2k=-6 | | 15+q=-6 | | g/3+8=4 | | 0.5(6)^x=9 | | 5(x+1)+20=4(x-3) | | 3x-8=8+10 | | -4w+-8=-16 | | -8+-n=2 | | 12+c=16.50 |